In consideration of the rich heritage of robotic and free flying neutral buoyancy operations experience resident at the SSL, the decision was made to create a next generation robotic vehicle that captured the design and operations experience that had been gathered over the years. This new vehicle was not only intended to capture the knowledge of the past, but was to be flexible and capable enough to support the demands of real planned and unplanned future space operations. The new vehicle design was also to support an easy transition from the neutral buoyancy environment into actual space operations with minimal design changes.
In answer to this challenge, work was started on the Ranger Neutral Buoyancy Vehicle. The manipulator configuration drew heavily on the previous years of robotic operations experience. The free flying base, along with the associated sensor and computer systems were designed to significantly enhance the neutral buoyancy simulation by increasing the quality of information available to the vehicle, along with the precision of the actuators. The power and pressurization systems were designed to significantly reduce the amount of time spent in routine vehicle maintenance, allowing more time for operations. Individual subsystems were also designed to be more robust, which was to significantly reduce the amount of time spent on repairs. The vehicle was given an advanced buoyancy compensation system which would allow it to balance itself, which would allow more water time to be used for space simulation, and less for divers trimming vehicle buoyancy.
In the sections which follow, the top level design and technical specifications of Ranger NBV's subsystems are described.